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Criteria for existence and stability of soliton solutions
of the cubic-quintic nonlinear Schrödinger equation
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A subset of the soliton solutions of the cubic-quintic nonlinear Schro¨dinger equation~NLSE! is presented in
analytical form. General criteria for existence are expressed in terms of the parameters of the NLSE. The
normalized momentum entering the stability criterion is evaluated explicitly.

PACS number~s!: 42.65.Tg, 03.65.Ge
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I. INTRODUCTION

Many physical problems can be described by the non
ear Schro¨dinger equation~NLSE! @1,2#. One of the main fea-
tures of the NLSE is the existence of a special class of
calized solutions, solitons, which are robust agai
perturbations and demonstrate a particlelike behavior. In
ticular, spatial solitons have attracted some interest in op
because of their possible use in optical communication@3#.

In all applications of solitons, the key problem is to fin
and evaluate criteria of the existence and stability expres
in terms of the parameters of the NLSE.

Considering solitons over nonvanishing backgrounds,
stability of the soliton is determined by the relation betwe
the soliton speed~traveling in a motionless background wit
a nonvanishing intensityJ`) and the parameters of th
NLSE. In this respect, the following analysis is based
and/or related to the results of Refs.@4–7#. Accordingly,
solitons are stable@7# if ]P/]v,0, where the renormalized
momentumP5 i /2*2`

1`(Cz* C2CzC* )(12J` /uCu2)dz for
soliton solutions of the NLSE is given by@5,6#

P5vE
2`

1`@J~z!2J`#2

J~z!
dz, ~1!

andv andJ5uC(z)u2 denote the velocity and the intensi
of the soliton, respectively. In the spatial case,v defines the
steering anglea of the soliton,v5tana. If ]P/]v.0, the
soliton is unstable@4,7,8#.

It was shown in a previous paper@9# ~herein referred to as
S! that a certain subset of soliton solutions of the NLS
exists and can be represented in closed form. Conditions
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this existence were given by the phase diagram conditi
~PDC! geometrically. In this paper we evaluate the PDC
gebraically, leading to explicit representations of the inte
sity J(z), the phaseg(z), the normalized momentumP, and
analytical criteria for existence~Secs. II, III, and IV!. Section
V contains a numerical example and summarizes the theo
ical discussions.

II. INTENSITY AND PHASE OF SOLITON SOLUTIONS

Graphs depicted in Figs. 5~a!–5~c! of S represent soliton
solutions

C~z,x!5AJ~z!eig(z)e2 ilx, ~2!

of the NLSE,

iCx1Czz5a1CuCu21a2CuCu4,
~3!

aiPR, $a1 ,a2%Þ$0,0%,

where@cf. Eq. ~S10!#

R~J!54S a2

3
J41

a1

2
J32lJ21kJ2C2D5~Jz!

2. ~4!

The diagrams can be specified algebraically. SinceD50
andg2>0, g3<0 @cf. Eqs.~S12!, ~S13!, and~S18!# are nec-
essary conditions for the existence of solitons@9#, Weier-
strass’s function in Eq.~S14! degenerates@10#, leading to
2821 ©2000 The American Physical Society
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J~z!55
J`2

3 j 1R8

4S j 12
R9

24D F3 j 11S j 12
R9

24D sinh2~A3 j 1z!G U
J5J0

, j 1.0, g3,0

J`1
6R8

R9S 12
R9

24
z2DU

J5J0

, j 150, g350,

~5!
d

e-

ha

th
li

g a
.

ves

sis

n-
with j 15A3 2g3/8.0, g35C2(a1
21 32

9 a2l)2 2
3 k(2a2k

1a1l)1 8
27 l3, and

J`5J01
R8

4S j 12
R9

24D U
J5J0

. ~6!

J0 is a simple positive root ofR(J). J` denotes the multiple
positive root ofR(J) ~double if j 1.0, triple, if j 150). J` is
equal to the background intensity in Eq.~1!. The prime in
Eq. ~5! indicates differentiation with respect toJ. Equation
~5! completely represents the intensityJ(z) of the soliton
solutions (g3,0 for nonalgebraic,g350 for algebraic soli-
tons! if the simple positive rootJ0 of R(J) can be expresse
in terms of the coefficients ofR(J). As will be seen below,
this is possible.

The phaseg(z) is related toJ(z) by @cf. Eq. ~S8!# J(z)
3(dg/dz)5C. Introducing the asymptotic wave numberq
5 limuzu→`(dg/dz) of the background plane wave, the int
gration constantC can be written asC5qJ` . Thus the phase
is given by~cf. Ref. @5#!

g~z!5J`qE dz

J~z!
, ~7!

with J(z) according to Eq.~6!.
With respect to a stability analysis, it should be noted t

the solutionJ(z) according to Eq.~5! refers to a situation in
which the background medium and the solitons have
same speed, so that the stability criterion cannot be app
iv
t

e
ed

directly because it refers to a background at rest supportin
soliton that travels with speedv relative to the background
Applying the transformation

C̃~z8,x8!5C~z,x!e2 iqz, z85z1qx, x85x, ~8!

the background becomes quiescent while the soliton mo
with speedv52q, so that, according to Eqs.~5! and~7!, the
intensityJ(z) and the phaseg(z) depend nontrivially on the
speedq. Obviously, the key problem of an existence analy
is to identify the simple positive rootJ0 of the fourth-order
polynomialR(J) @cf. Figs. 5~a!–5~c! in S#.

III. NONALGEBRAIC SOLITONS

First, in Eq.~5!, the case of nonalgebraic solitons is co
sidered (j 1.0, g3,0). SinceJ` is a double root, the inte-
gration constantk is related toJ` by

k52
4

3
a2J`

3 2
3

2
a1J`

2 12lJ` . ~9!

HenceR(J`) can be written as

R~J`!524J`
2 @J`~a11a2J`!2l1q2#, ~10!

leading to the double roots

J`65
2a16Aa1

214a2~l2q2!

2a2
. ~11!

The simple roots, associated toJ`6 , are, respectively,
J06
1 5

2a122Aa1
214a2~l2q2!6A48a2q21@a112Aa1

214a2~l2q2!#2

4a2

~12a!

and

J06
2 5

2a112Aa1
214a2~l2q2!6A48a2q21@a112Aa1

214a2~l2q2!#2

4a2

. ~12b!
l

ex-
The phase diagrams according to Figs. 5~a! and 5~b! of S
can be specified by using Eqs.~11! and ~12!. If a2.0 @Fig.
5~a! of S#, there must be three and only three real posit
roots ofR(J)50. It can be shown that the double rootJ`2
e

must be disregarded since onlyJ`1 can be the largest rea
root of the associated polynominalR with k given by Eq.~9!.
For this case, the necessary and sufficient conditions of
istence are
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a1
214a2~l2q2!>0, ~13a!

2q22l,
a1

22a1Aa1
214a2~l2q2!

4a2
, ~13b!

Aa1
214a2~l2q2!1

a1

2
.0, ~13c!

being the algebraic representation of the phase diagram
Fig. 5~a! of S associated to a dark soliton.

In the case of solitons according to Fig. 5~b! of S, four
changes of sign in the sequence$a2 ,a1 ,2l,k,2q2J`

2 % are
necessary, leading toa2,0, a1.0, and hence it follows tha
J`2 is either the greatest root ofR or the associated simpl
roots are complex. Thus, soliton solutions do not exist ifJ`2

is chosen in Eq.~5!, so that onlyJ`1[J` must be consid-
ered. Obviously,J01

1 ,J`,J02
1 must hold, which is equiva-

lent to
in

48a2q21@a112Aa1
214a2~l2q2!#2.0, ~14a!

2q22l,
a1

22a1Aa1
214a2~l2q2!

4a2
, ~14b!

subject to condition~13a!. Conditions ~14! represent the
phase diagram in Fig. 5~b! of S. Thus, the intensityJ(z) and
hence the phaseg(z) and the normalized momentumP of
nonalgebraic solitons can be evaluated according to Eq.~5a!
subject to conditions~13! and ~14!. If a2.0, J01

1 must be
chosen in Eq.~5! yielding a dark soliton. Ifa2,0 holds, a
bright and a dark soliton is represented by choosingJ02

1 and
J01

1 in Eq. ~5!, respectively. Evaluation yields, for bright an
dark solitons, respectively,
g65qS z1

b tanh21SAb2J`S 2 j 11
R9

24
D

3 j 1J`2b
tanhA3 j 1zD

A3 j 1~3 j 1I `2b!Fb2J`S 2 j 11
R9

24
D G DU J5J06 , ~15!

P65
qb

A3 j 1
S tanh21A2 j 11

R9

24

3 j 1

A3 j 1S 2 j 11
R9

24
D

2

J` tanh21AJ`S 2 j 11
R9

24
D 2b

3 j 1J`2b

A~3 j 1J`2b!FJ`S 2 j 11
R9

24
D 2bG DU J5J06 , ~16!
nt
In
with b53 j 1R8/4@ j 12(R9/24)#, and

R~J!54H a2

3
J41

a2

2
J32lJ2

1S 2J`l2
3

2
a1J`

2 2
4a2

3
J`

3 D J2J`
2 q2J . ~17!

Numerical evaluation ofJ(z), g(z), P subject to the exis-
tence criteria~13! or ~14! is straightforward, as illustrated in
Sec. V.

IV. ALGEBRAIC SOLITONS

Turning to algebraic solitons@cf. Figs. 5~c! and 5~d! of S#,
R(J) has a triple rootJ̃` so that, in addition to Eq.~5!,

l52a2J̃`
2 1

3

2
a1J̃` ~18!
must hold. Thus, the triple root is given by

J̃`65
2a16Aa1

2116a2q2

4a2
, ~19!

leading tok6 , l6 according to Eqs.~9! and ~18!.
The associated simple roots are

J̃065
3~2a17Aa1

2116a2q2!

4a2
. ~20!

Consistent with the Cartesian sign rule applied toR(J), the
parameters of the algebraic solitons are restricted by

a2,0, a1.0. ~21!

Evaluation of 0, J̃`6, J̃06 leads to necessary and sufficie
conditions for the existence of bright algebraic solitons.
addition to condition~21!, either
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a1
2116a2q2>0 ~22a!

and

a1
21

64

3
a2q2,0, ~22b!

where J̃`1 or J̃`2 can be taken for the evaluation o
J(z),g(z),P, or

a1
21

64

3
a2q2>0, ~23!

where onlyJ̃`1 must be taken for the evaluation of Eqs.~5!,
th

S

p-
~7!, and~1!. As the evaluation of 0, J̃06, J̃`6 shows, nec-
essary and sufficient conditions for the existence of dark
gebraic solitons are condition~21! and

a1
21

64

3
a2q2.0, ~24!

where only J̃`2 must be chosen for the evaluation
J(z),g(z),P.

Thus, inserting the appropriateJ̃`6 ,J̃06 given by Eqs.
~19! and~20! into Eq.~5!, the intensityJ(z) of all bright and
dark algebraic solitons can be evaluated explicitly, leading
J6~z!5
36a2a12a1

3z26Aa1
2116a2q2@~a1

2164a2q2!z2136a2#

4a2@a1~5a164Aa1
2116a2q2!z214a2~16q2z223!#

. ~25!

Subject to conditions~22! and ~23!, J1(z) andJ2(z) represent a bright soliton~only one is stable!. If condition ~24! holds,
J2(z) represents a dark soliton.

According to Eqs.~7! and ~1!, the phase functiong(z) and the normalized momentumP for algebraic solitons are
determined by

g5g̃6~z!5qS z2

12A6R8 tanh21S R9AJ̃`6z

2A6AR9J̃`616R8
D

R9AJ̃`6~R9J̃`616R8!

UJ5 J̃06
D , ~26!
aic

s,

le

of

-

n-

d
e

P5 P̃652
3A6pqR8

R9
SA2

1

R9

1A2
J̃`6

6R81R9J̃`6

D UJ5 J̃06 , ~27!

with

R5R̃6~J!54S a2

3
J41

a1

2
J32l6J21k6J2q2J̃`6

2 D .

~28!

The signs in Eqs.~26! and~27! are associated consistent wi
conditions~22!–~24!.

V. EXAMPLE AND SUMMARY

An example can elucidate the foregoing procedure.
lecting a153, anda2521, all stable solitons of the NLSE
~3!, given by Eq.~2!, can be determined by finding the a
propriate parametersq,l. Conditiong3(q,l)<0 @or, equiva-
lently, condition~14b!# defines a subset of the (q-l) plane
~see Fig. 1!, for which condition~14a! is fulfilled. Pointsq,l
e-

on the boundaryC of this subset are associated to algebr
solitons, sinceg3(q,l)50 on C. Points insideC belong to
nonalgebraic solitons. OutsideC, real solitons of the NLSE
do not exist. Evaluation of Eqs.~5! and ~15! with J`5J`1

and J02 , J01 yields bright and dark nonalgebraic soliton
respectively, as shown in Fig. 2. Since]P1 /]q
.0,]P2 /]q,0, only dark nonalgebraic solitons are stab
~see Fig. 1!.

For algebraic solitons, the upper and the lower branch
C are represented byl2 andl1 @according to Eqs.~18! and
~19!#, respectively. Condition~24! is fulfilled for uqu
,0.649 so that dark solitonsJ2(z) exist according to Eq.
~25!. Since] P̃2 /]q.0 for uqu,0.649, algebraic dark soli
tons are stable. Subject to condition~23!, the bright algebraic
solitons are unstable since] P̃1 /]q,0 for uqu,0.649. Con-
ditions ~22a! and~22b! are fulfilled for 0.649,uqu,0.750 so
that bright solitonsJ1(z) and J2(z) exist. As shown in
Fig. 1, only ] P̃1 /]q is positive forq subject to conditions
~22a! and~22b!, leading to stableJ1(z) and unstableJ2(z).
As depicted in Fig. 3, the numerical simulation yields a tra
sition from a stable dark solitonJ2(z) to an unstable bright
soliton atq50.649. All results summarized in Fig. 1 depen
on a1 ,a2. For arbitrarya1 ,a2, the discussion of the existenc
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and stability criteria is intricate and requires further inves
gation.

To sum up, we have presented, to our knowledge for
first time, an analysis that contains analytical existence
teria for solitons of the NLSE~3! and exact analytical ex
pressions for the intensity, phase, and normalized mom
tum.

In particular, necessary and sufficient for the existence
nonalgebraic (g3,0) bright and dark solitons are, ifa2,0,
the conditions~13a!, ~14a!, ~14b!, and a1.0. If a2.0, in
addition to conditions~13a! and~13b!, condition~13c! must
be valid.

Since the normalized momentumP6(a1 ,a2 ,l,q) is
given analytically by Eq. ~16!, the stability criterion
(]P6 /]q.0) represents the general dependence of stab
with respect to the parametersa1 ,a2 ,l and the soliton ve-
locity v52q.

FIG. 1. Region of existenceg3(q,l)<0 ~bounded by the closed
curve C) and dependence of the normalized momentumP on pa-
rametersq andl for a153, a2521. InsideC, nonalgebraic soli-
tons. OnC, algebraic solitons:aa8 stable dark;ag andb8g8 stable
bright; gg8 unstable bright; curves~1!, ~2!, ~3!, ~4! denote

P1 ,P2 ,P̃1 ,P̃2 , respectively.
-
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ty

Necessary and sufficient for the existence of algebr
solitons (g350) are a2,0, a1.0, and, for dark solitons,
condition~24!. Bright algebraic solitions exist, if, in addition
to a2,0,a1.0, conditions~22a! and ~22b! or @instead of
conditions~22a! and~22b!# condition~23! is satisfied. Since
l is related to the parametersa1 ,a2 ,q by Eq. ~18!, in this
case the normalized momentumP̃6 depends on the param
etersa1 ,a2 ,q only. Thus, the parameter dependence of
stability criterion is simplified to a certain extent.
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FIG. 2. Phase diagram~a! and profiles ofJ(z) @~b!# and g(z)
@~c!# of nonalgebraic solitons~for a153,a251,l52,q50.2).
FIG. 3. Phase diagrams and intensity profiles of algebraic solitons:~a! at q50.600, l52.519; ~b! at q50.649, l52.531; ~c! at q
50.680,l52.524.
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