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Criteria for existence and stability of soliton solutions
of the cubic-quintic nonlinear Schrodinger equation
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A subset of the soliton solutions of the cubic-quintic nonlinear Sdiniger equatiofNLSE) is presented in
analytical form. General criteria for existence are expressed in terms of the parameters of the NLSE. The
normalized momentum entering the stability criterion is evaluated explicitly.

PACS numbes): 42.65.Tg, 03.65.Ge

[. INTRODUCTION this existence were given by the phase diagram conditions
(PDC) geometrically. In this paper we evaluate the PDC al-
Many physical problems can be described by the nonlingebraically, leading to explicit representations of the inten-
ear Schrdinger equatiodNLSE) [1,2]. One of the main fea- sity J(z), the phase(z), the normalized momentui®, and
tures of the NLSE is the existence of a special class of loanalytical criteria for existenc&ecs. 11, Ill, and I\j. Section
calized solutions, solitons, which are robust againstV contains a numerical example and summarizes the theoret-
perturbations and demonstrate a particlelike behavior. In paiical discussions.
ticular, spatial solitons have attracted some interest in optics
because of their possible use in optical communicat&in
In all applications of solitons, the key prOblem is to find II. INTENSITY AND PHASE OF SOLITON SOLUTIONS
and evaluate criteria of the existence and stability expressed
in terms of the parameters of the NLSE. : P :
Considering solitons over nonvanishing backgrounds, th%olftrizci)ﬁzs depicted in Figs(&-5(c) of S represent soliton
stability of the soliton is determined by the relation between
the soliton speedtraveling in a motionless background with
a nonvanishing intensityl,,) and the parameters of the
NLSE. In this respect, the following analysis is based on W (z,x)=J(z)e'9@e M 2
and/or related to the results of Refdl-7]. Accordingly,
solitons are stablg7] if dP/dv<0, where the renormalized
momentumP=i/2f Z(W; W —W,¥*)(1-J../|[¥[?)dzfor  of the NLSE,
soliton solutions of the NLSE is given 4%,6]

iV, +V,=a,V|V|?+a,¥|V|*

++[3(2) .7 ®
P:Uf—wM—Z)dz' (1)

aieR, {a;,a,}#{0,0,

andv andJ=|V(z)|? denote the velocity and the intensity where[cf. Eq. (S10]
of the soliton, respectively. In the spatial casedefines the
steering anglex of the soliton,v =tana. If JP/dv>0, the
soliton is unstabl¢4,7,9). a a
It was shown in a previous papld] (herein referred to as 4/ %2qa, %13y 42 2| — 2
S) that a certain subset of soliton solutions of the NLSE R()=4 3 I 2 PoATHkI=C (3% @
exists and can be represented in closed form. Conditions for

The diagrams can be specified algebraically. Sitee0
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’ 3j,R' |
‘JOO " R ’ Jl>0793<0
4(]1_ ﬂ) Bjat| 1~ ﬂ) sink?(3j,2) -
-0
J(z)= 5
6R’ _
‘]00+ " ’ J]_:O, 93:01
R"| 1— 22)
24" ||,

with  j;=3/—gs/8>0,

+a;\)+ £\3, and

ga=C*(af+ Fap\) — Fk(2azk

\]oc: Jo+

I ©)
Jl_ﬁ "

0

Jo is a simple positive root oR(J). J., denotes the multiple
positive root ofR(J) (double ifj;>0, triple, if j;=0).J,. is
equal to the background intensity in E{). The prime in
Eqg. (5) indicates differentiation with respect th Equation
(5) completely represents the intensilyz) of the soliton
solutions @3;<<0 for nonalgebraicg;=0 for algebraic soli-
tong if the simple positive rood, of R(J) can be expressed
in terms of the coefficients dR(J). As will be seen below,
this is possible.

The phaseg(z) is related toJ(z) by [cf. Eq. (S8] J(2)
X(dg/dz)=C. Introducing the asymptotic wave numbegr
=limy,_..(dg/dz) of the background plane wave, the inte-
gration constant can be written a€=qJ,.. Thus the phase
is given by(cf. Ref.[5])

d
9(2)=3.q f J(—ZZ) @

with J(z) according to Eq(6).

With respect to a stability analysis, it should be noted that

the solutionJ(z) according to Eq(5) refers to a situation in

directly because it refers to a background at rest supporting a
soliton that travels with speed relative to the background.
Applying the transformation
V(z' x)=W(z,x)e 9 7' =z+qXx, (8)
the background becomes quiescent while the soliton moves
with speedy = —q, so that, according to Eq&) and(7), the
intensityJ(z) and the phasg(z) depend nontrivially on the
speedy. Obviously, the key problem of an existence analysis
is to identify the simple positive roal, of the fourth-order
polynomial R(J) [cf. Figs. a)-5(c) in S].

X' =X,

IIl. NONALGEBRAIC SOLITONS

First, in Eq.(5), the case of nonalgebraic solitons is con-
sidered (,>0, g3<<0). SincelJ., is a double root, the inte-
gration constank is related toJ., by

4 3 3 2
k=—§a2Jm—§ale+2)\Jm. 9)
HenceR(J.,) can be written as
R(J..)=—4J2[J..(ay+a,J.) —\+q?], (10)
leading to the double roots
—a;FJa‘+4a,(A—q?)
I - 1 1 2 q . (11)

2a,

which the background medium and the solitons have the
same speed, so that the stability criterion cannot be applied The simple roots, associated ig. , are, respectively,

+

‘JOi_

—a;—2val+4a(\—g) = \/48a2q2+[a1+2\/a§+ 4ay(N—q?)]?

and

(129

4a,

Jo-

The phase diagrams according to Fige) &nd 5b) of S
can be specified by using Eq4.l) and (12). If a,>0 [Fig.

—a;+2\aj+4a,(\—q?) = \/48a2q2+[a1+ 2\a3+4ay(A—qg?)]?

4a,

(12b

must be disregarded since only,, can be the largest real
root of the associated polynomiraiwith k given by Eq.(9).

5(a) of S, there must be three and only three real positiveFor this case, the necessary and sufficient conditions of ex-

roots ofR(J)=0. It can be shown that the double raht

istence are



PRE 62

aZ+4a,(\—q?)=0,

aZ—a;\as+4a A —q?)

4a,

a
JaZ+day(A—?) + 71> 0,

20°—\<

being the algebraic representation of the phase diagram in

Fig. 5@ of S associated to a dark soliton.

In the case of solitons according to Figbbof S, four
changes of sign in the sequen@,a;,—\,k,—q2J2} are
necessary, leading ,<0,a;>0, and hence it follows that
J.._ is either the greatest root & or the associated simple
roots are complex. Thus, soliton solutions do not exidt,if
is chosen in Eq(5), so that onlyJ,,,=J.. must be consid-
ered. Obviously,);, <J..<Jg_ must hold, which is equiva-

lent to
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(13a

(130

(13b

2823
48a,0%+[a;+2\ai+4a,(A—qg?)]>>0, (143
2 2 2
aT—a;vas+4a,(\—
202 LTV 2( Q), (14b)
4a,

Subject to condition(133. Conditions (14) represent the
phase diagram in Fig.(B) of S. Thus, the intensity(z) and
hence the phasg(z) and the normalized momentum of
nonalgebraic solitons can be evaluated according ta%.
subject to conditiong13) and (14). If a,>0, J5’+ must be
chosen in Eq(5) yielding a dark soliton. lfa,<<0 holds, a
bright and a dark soliton is represented by choosigig and
Jg. in Eq. (5), respectively. Evaluation yields, for bright and
dark solitons, respectively,

RII
Jo| 2j1+ —
117 %4
b tanh * _ tanhy/3j,z
3] 1\]30_ b
g+=q| z+t+ J=Jg+, (15
RH
| 2] 1+ —|—b
J.tanh!
qb 3j1d—
Pi — - J—JO+ y (16)
V3j1 )
|
with b=3j;R'/4j,—(R"/24)], and must hold. Thus, the triple root is given by
a a - —a,* a2+ 16a,0>
R(J)=4{ 2234+ 2 33-\22 Jo=——— L 0 (19
3 2 4a,
4 2330)\—5313020 4a; 33)J J2q ] (17) leading tok.. , A, according to Eqs(9) and(18).
2 3 The associated simple roots are
Numerical evaluation 08(z), g(z), P subject to the exis- ~ 3(—a;~+ \/a§+ 16a,0°)
tence criteria13) or (14) is straightforward, as illustrated in Jox= 4a, . (20)
Sec. V.

IV. ALGEBRAIC SOLITONS

Turning to algebraic solitongf. Figs. 5c¢) and §d) of S,
R(J) has a triple roofl,, so that, in addition to Eq5),

3 -
za1Jds

92
= +
N=2a,J: 5

(18

Consistent with the Cartesian sign rule applieR(@), the
parameters of the algebraic solitons are restricted by
a,<0,

a,>0. (21)

Evaluation of 6<J... <J,. leads to necessary and sufficient
conditions for the existence of bright algebraic solitons. In
addition to condition(21), either
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as+16a,0°=0 (228 (7), and(1). As the evaluation of &J,. <J... shows, nec-
essary and sufficient conditions for the existence of dark al-
and gebraic solitons are conditiof21) and
24 o4 2<0 (22b) 64
ai+ —-a ,
13 al+ §a2q2>0, (24)

where J.., or J,_ can be taken for the evaluation of
J(2),9(2),P, or
where onlyJ.._ must be chosen for the evaluation of
J(2),9(2),P.

Thus, inserting the appropriate,. ,Jo. given by Egs.
(19) and(20) into Eq.(5), the intensityd(z) of all bright and
where onlyJ... must be taken for the evaluation of E@S), dark algebraic solitons can be evaluated explicitly, leading to

64
as+ §a2q2> 0, (23)

36a,a,— a3z’ =+ \ai+ 16a,0°[ (a2 + 64a,q°) z°+ 363, ]
+ Z - .
4a,[a;(5a;+4\/al+16a,q%) 2%+ 4a,(16q°2°— 3) ]

(25

Subject to condition$22) and(23), J.(z) andJ_(z) represent a bright solitofonly one is stable If condition (24) holds,
J_(2) represents a dark soliton.

According to Egs.(7) and (1), the phase functiomy(z) and the normalized momentu for algebraic solitons are
determined by

R'"VJ.+Z
12/6R’ tanh ! —
- 276 VR3, . +6R’ _
9=9.(2)=q| z— J=Jo+ |, (26)

R'\V3,. (R, . +6R")

5 3 \/gwq R/ \/\1 on the boundaryC of this subset are associated to algebraic
P=P.=— S — solitons, sincey;(g,\)=0 on C. Points insideC belong to
- R" R" nonalgebraic solitons. Outsidg real solitons of the NLSE
— do not exist. Evaluation of Eq$5) and (15) with J,=J..,
A Joos ) 3=3 27) andJy_, Jo. Yields bright and dark nonalgebraic solitons,
6R'+R"J.. 0= respectively, as shown in Fig. 2. Sinc&P./dq

>0,0P_/9q<0, only dark nonalgebraic solitons are stable
with (see Fig. L
For algebraic solitons, the upper and the lower branch of
P n. Ik, I—qlF? ) C are represented by_ and\ , [according to Eqs(18) and
x x ok | (19)], respectively. Condition(24) is fulfiled for |q|
(28 <0.649 so that dark soliton_(z) exist according to Eqg.
(25). SincedP_/dq>0 for |q|<0.649, algebraic dark soli-
tons are stable. Subject to conditi(®8), the bright algebraic
solitons are unstable siné®, /9q<0 for |g|<0.649. Con-
ditions (223 and(22b) are fulfilled for 0.649<|qg|<0.750 so
that bright solitonsJ, (z) and J_(z) exist. As shown in
An example can elucidate the foregoing procedure. SeFig. 1, only P /dq is positive forq subject to conditions
lectinga; =3, anda,=—1, all stable solitons of the NLSE (228 and(22b), leading to stabld, (z) and unstabld _(z).
(3), given by Eq.(2), can be determined by finding the ap- As depicted in Fig. 3, the numerical simulation yields a tran-
propriate parameteig \. Conditiongs(g,\)<0 [or, equiva-  sition from a stable dark solitodi_(z) to an unstable bright
lently, condition(14b)] defines a subset of thej{\) plane  soliton atq=0.649. All results summarized in Fig. 1 depend
(see Fig. 1, for which condition(143 is fulfilled. Pointsq,\ ona,,a,. For arbitrarya, ,a,, the discussion of the existence

~ a _, &
= i = R + —
R=R. (J) 4(3J 5

The signs in Eq926) and(27) are associated consistent with
conditions(22)—(24).

V. EXAMPLE AND SUMMARY
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FIG. 1. Region of existenogs(q,\) <0 (bounded by the closed
curve C) and dependence of the normalized momen®imn pa-
rametersq and\ for a;=3, a,=—1. InsideC, nonalgebraic soli-
tons. OnC, algebraic solitonsea’ stable darkpy andB’ y' stable
bright; vy’ unstable bright; curveql), (2), (3), (4) denote

P, .P_,P. ,P_, respectively.

gation.
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- S ) ) ~ FIG. 2. Phase diagrarta) and profiles ofJ(z) [(b)] and g(z)
and stability criteria is intricate and requires further investi-[(c)] of nonalgebraic solitonéor a;=3,a,= 1A =2,=0.2).

To sum up, we have presented, to our knowledge for the

first time, an analysis that contains analytical existence cri-
teria for solitons of the NLSE3) and exact analytical ex-

Necessary and sufficient for the existence of algebraic
solitons @;=0) area,<0, a;>0, and, for dark solitons,

pressions for the intensity, phase, and normalized momersondition(24). Bright algebraic solitions exist, if, in addition
to a,<0,a,>0, conditions(229 and (22b) or [instead of

In particular, necessary and sufficient for the existence ogonditions(223 and(22b)] condition (23) is satisfied. Since

tum.

nonalgebraic ¢;<<0) bright and dark solitons are, &,<0,
the conditions(13a), (144, (14b), anda;>0. If a,>0, in
addition to conditiong13a and(13b), condition(13¢) must

be valid.

\ is related to the parametess ,a,,q by Eqg. (18), in this

case the normalized momentuf. depends on the param-
etersa;,a,,q only. Thus, the parameter dependence of the

stability criterion is simplified to a certain extent.

Since the normalized momentur®. (a;,a,,\,q) is
given analytically by Eq.(16), the stability criterion
(0P 199>0) represents the general dependence of stability

with respect to the parameteas,a,, A and the soliton ve-

locity v=—q.
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FIG. 3. Phase diagrams and intensity profiles of algebraic solit@sat q=0.600,\ =2.519; (b) at q=0.649,\=2.531;(c) atq

=0.680,A=2.524.
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